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Up to now, problems on elastic-wave propagation in granular skeletons have not been 
solved in rigorous formulation. This is due to difficulties in incorporating the boundary 
conditions at the entire complicated pore surfaces. I~ny researchers such as ~cKenzie and 
Toksoz have sought to avoid this difficulty (in the case of isolated pores) by solving the 
exact problem for an isolated inclusion and assuming that the pores do not influence one 
another [i]. This formulation gives correct results only for very low porosity. In the 
case of arbitrary (not small) porosity, the solutions produce a fall in the Lame coefficients 
% and ~, but because of the fall in the rock density the fall in the velocities is very 
slight, and in particular the push-wave speeds in the empty skeleton are higher than those 
in a water-saturated one for a spherical shape for the pores, which conflicts with experiment 
[2]. Another group of researchers has been concerned mainly with composites, and they have 
developed approximate methods for constructing the so-called Hashin--Shtrikman fork [3, 4], 
where instead of the exact solution one defines acceptable boundaries to the variations in 

and ~. If the fork is sufficiently narrow, the values of ~ and ~ for a composite are vir- 
tually reliable. The width of the fork increases with the difference in elastic properties 
between the skeleton and the fluid, and estimates of the Hashin--Shtrikman type for real col- 
lectors are not acceptable on account of the large changes in ~ and ~ (if the pores are 
filled with gas) or in ~ (if the pores are filled with liquid). Attempts have been made [5, 
6] at rigorous calculation of the elastic properties for empty skeletons with periodic struc- 
tures. Such calculations can be performed because the boundary conditions in that case are 
posed at the boundary of a single unique period, and then these conditions are periodically 
repeated in the microstructure. The problem then amounts to determining the average stress 
and strain tensors for some period in the structure. An algorithm has been given for obtain- 
ing the exact solution [6], and theory and experiment are found to be in very good agreement 
for two-dimensiona~ media. 

However, a periodic structure is a particular case of a microstructure. In fact, there 
is periodic repetition only for certain integral characteristics of the microstructure, but 
not for the individual properties. At the same time, it is virtually impossible to indicate 
a microstructure of sufficiently small period if the structure is composed of particles dif- 
fering in size, as occurs in terrigenous collectors. Finally, all periodic structures form 
anisotropic bodies. One can obtain an isotropic and statistically homogeneous body only on 
nonperiodic structures with a fairly random organization. Therefore, one needs a new 
approach to determining the mean values of % and ~ for microscopically inhomogeneous and 
statistically isotropic media. 

The following arguments can be advanced here. One can consider the rigorous solution 
of the equilibrium equations for an individual grain having a certain number of areas of con- 
tact with its neighbors. This problem can be solved if the forces at the contacts are given. 
However, one can assume that these forces are undetermined on the basis that the center of 
gravity of the grain is deformed as in a planar longitudinal wave, i.e., exx =eyy =0, ezz #0, 
~z =I at the grain center. If one considers the stresses on the grain as balanced (which is 
reasonable because the grain radius is much less than the wavelength) and the deformation 
energy is assumed minimal, then the problem becomes completely defined and the forces can 
be calculated as functions of the grain material and structure of the pore space under these 
conditions. From these forces one can determine the average strain tensor at the center of 
the grain and the average stress tensor. The relation between these gives the mean values 
of the Lam~ parameters ~ and ~ for any grain and therefore for the entire microstructure. 
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We consider the situation where the wavelength is much greater than the particle radius 
re, i.e., l>>ro; in that case, the inertial forces are very small by comparison with those 
produced by the internal stresses. 

The expressions are as follows. The bulk forces set up by the stresses, i.e., div dik 
or order elk/re, vary substantially over distances of the order of the grain size, since div 
elk ~pV~e/ro, where e is the bulk strain. At the same time, the inertial forces are pU i 
0ui/T 2, and therefore we have the condition pv~e/ro>>pu/T 2, where T is the wave period. As 
TVp ~l (wavelength) and u/l be, we get e/ro>>eTl, and this inequality is obeyed by virtue of 
the condition l>>ro, and this implies the inequality 3Oik/3Xk>>0ui . The smallness of the 
inertial forces by comparison with the forces set up by the internal stresses enables one 
to integrate the equation of equilibrium instead of the equations of motion, i.e., to deter- 
mine the stress and strain fields we neglect the wave processes within a grain. 

We therefore have to integrate the equation of equilibrium 3~ik/3Xk=0 in the internal 
region of the grain Vo if forces fi are given at the area of contact and there are no loads 
over the rest of the grain surface. We construct the solution with as yet undetermined 
forces fi but with a given system of areas of contact by boundary integral equation methods, 

with the displacement vector uk(x) represented in the form Uk(X) = ~ ~i(y)Fik(X, y)dsy, while 

~(x) satisfies a system of integral equations [7]" 

System (1) is singular because of the unintegrable singularity in the tensor Fik (~) when 
points x and y coincide. We use a standard technique [7] to eliminate this singularity, 
which is based on using instead of the operator Fik (~) (~,=) the conjugate operator Fik (x, y): 

, f [p(l) tx 2 
8 

System (2) does n o t  have  s i n g u l a r i t i e s  f o r  x +y  and can be s o l v e d  by s u c c e s s i v e  a p p r o x i -  
m a t i o n .  I n  t h a t  method,  we pu t  ( 1 / 2 ) f k ( x )  =akmfl(xm) , where akm a r e  c o n s t a n t  c o e f f i c i e n t s  and 
fl(x) i s  t he  c h a r a c t e r i s t i c  f u n c t i o n  o f  t h e  a r e a  ds w i t h i n  which l i e s  p o i n t  x,  i . e . ,  ~(x) =0 
i f  x ~ d s  and ~(x) =1 i f  x ~ d s .  Then t h e  f i e l d  T k (x )  i s  r e p r e s e n t e d  by the  sum 

and recurrence relations exist between the different functions: 

- -  = r ~  (x,  y)  , ~  (y) = _~,  ( 3 )  
a 

Then t h e r e  i s  a l i n e a r  r e l a t i o n s h i p  be tween  t he  d i s p l a c e m e n t s  a t  a c e r t a i n  p o i n t  x m and the  
f o r c e s  a i n  a t  a l l  t h e  o t h e r  p o i n t s  ( i n c l u d i n g  the  p o i n t  Xm). This  r e l a t i o n s h i p  i s  e x p r e s s e d  
v i a  3n u n d e f i n e d  c o n s t a n t s  and must be supp lemen ted  w i t h  c e r t a i n  c o n d i t i o n s .  To e l i m i n a t e  
t he  i n d e t e r m i n a c y  in  r e l a t i o n  to  the  g iven  f o r c e s  akm, we p r o c e e d  as f o l l o w s .  C l e a r l y ,  t he  
actual deformation process is such that its potential energy is minimal. In fact, this 
assertion must apply to a volume containing a set of particles. In principle, one could 
apply the same scheme of arguments and calculations for several grains and minimize their 
potential energy. For a large number of grains, this technique might lead to solution of 
the equilibrium problem for a granular body. The present study does not deal with this 
large problem. However, it is clearly reasonable to begin such a study with a volume dV con- 
taining only one grain typical in a certain sense. The potential energy is the product of 

S f o r c e  and d i s p l a c e m e n t ,  which i s  r e l a t e d  to  the  f o r c e  by (2 ) ,  so E - P i u i d s .  The d i s p l a c e -  
s 

ments a r e  l i n e a r l y  r e l a t e d  to  the  f o r c e s ,  so the  d e f o r m a t i o n  e n e r g y  i s  a q u a d r a t i c  f u n c t i o n  
o f  t he  c o e f f i c i e n t s  akm: 

where 

~ (.r~,. x~) ~= n~,, (x~, x~) !- G~, (.~'~) r,,~ (.~'m, .,'j) As. 
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In (4) we have omitted the sign of summation over the subscripts i, j, k, and m. The func- 
tions HJik, Gi I are related to realization of the successive approximations in (3), while 
Fkl(Xm, xj) is the Green's tensor for the elastic-equilibrium equation. If we sum with 
respect to subscript m, which runs through all points on the areas of contact, then 

i i  j , , /" ~ n;.~<ll., +;; ( ,q . . r ; )  n., j~ l t : t l )u,( .q)  [ -a iy l t , . , t l~ i i :z ( . r . , . . . r j )  

I r~:111,.,/',. (.r_,) [- . . . ! n, j , lh, , l l~ l ,  " ( . r , , . . r j )  i n+,,nh,,I)~J~ (.r,,). ( 5 )  

In (5), the symbol Pik(Xs) denotes Cil(Xs)Clk(Xm, xs)As =CiZ(Xs)H/.k(Xs) , with Hlk(Xs) deter- 
mined from the formula ?llk(X s) =lim s Xs) ; as regards the conditions under which (5) 

+lit ' x 

is minimized, these include the equilibrium conditions for the grain as a whole (not only 
for small volumes in the inner part). The equilibrium conditions for the grain as a whole 
require the vector for the surfaces to be zero and the same for the antisymmetric tensor for 
the principal moment of the grain: 

is 

. c~t,~ o+. l,. I .  -." .,,"" ( 6 )  
2 1 

71 )s )l 

(!/if:j:,---:~nj._,) O. _~'~ (_'.~uj, ..... .,3uj:)) �9 (). %',. (.rjn~., ! b u j , )  O, (7 )  
; /  I J :1 ;/ I 

I n  ( 7 ) ,  x ,  y ,  and  z a r e  t h e  C a r t e s i a n  c o o r d i n a t e s  o f  t h e  c o n t a c t  e l e m e n t s .  The t h r e e  c o n d i -  
t i o n s  (6 )  r e d u c e  t h e  f o r c e  v e c t o r  t o  z e r o ,  w h i l e  t h e  c o n d i t i o n s  o f  ( 7 )  r e d u c e  t h e  r o t a t i o n  
moment of the grain to zero. We further assume that there are no field fluctuations at the 
center of the grain, i.e., the center deforms as in a planar longitudinal wave, so at the 
center 

1 ,11  - e . , . . ,  ' - e l ~  r 1 :  ~ - r . . : ,  ( ) ,  r:):: .... . e ,  ( 8 )  

and the deformation e differs from zero, for example e =i. Then to the six conditions of 
(6) and (7) we add six conditions imposed on the strains. These conditions also consist of 
six linear equations for the forces, as is clear from (i). ~le twelve conditions (6)-(8) go 
with the requirement of minimum strain energy to provide sufficient equations for defining 
the unkno~n forces on the areas of contact when a longitudinal wave on average planar is 
incident. Lagrange's method amounts to solving a system of equations of dimensions 3n +p 

consisting of expressions of the type 

+t(1~._, , 'i~1~ I)  
aq,, ' X . , - -  : . . .  +L~,,, ,,---O. ( 9 )  'n--! 4 2.., , , , , -~  ,,,,. . , , ,  

To equations (9) one adds p equations (in our case 12 of them) as in (7)-(9). 

As E is a quadratic function of the variables as, and the coupling equations are linear, 
the problem as a whole amounts to solving a linear system of dimensions 3n +p. The expres- 

sion for aE/aask takes the form 

, , r  --. .+ . , ( I  - '  i,;,, ' , , + J d , ,  ( t o )  
+lq; h'~ i I i . j  . 

In (i0), ks =i, 2,..., 3n; i, k =I, 2, 3. 

As we know the forces Pi, one can determine the average stress tensor at the grain 
center from the following formula 181 : 

~i~, +:--~ IP+,+"+: [ l ) t : . r ; l d * ,  ( t l )  
x 
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where ~i, xk are the Cartesian coordinates of the forces and V is the grai~ volume. The 
reletions between these strains and the average stresses are given by the average values of 
the La~ ~ co• nts % and ~ for the entire structure. The integration in (Ii) is extended 
o~L! Lo ti~ contact region SE, where ~ is the fraction of the contact area in relation to 
t ~e e~tire grain surface, so it is clear that the average stress tensor will be dependent 
o~ ~. As s is expressed via n =ooro/3 (ooro is the product of the specific surface and the 
mean grain size) in the form 1 -- e =N/(I -- f), where f is the porosity, the mean values 
of % and ~ for the structure will be determined by at least two geometrical parameters: the 
porosity f and the product of the specific surface by the mean grain size q. It can be 
shown that 0~n~l -- f. Calculations have been performed for n ~ain with eight identical 
arbitrarily disposed contact areas for various values of the porosity and specific surface 
of the pores, which has shorn that the wave speed in fact is dependent at least on two geo- 
metrical parameters. The contact areas are split up into elementary ones. The forces are 
taken as constant within an element. In practical calculations, one uses a grain with a 
spherical shape for the free part of the surface and with circular contact areas (the bound- 
ary conditions are satisfied at 720 points on the grain surface), in experiments with arti- 
ficial models for granular media, it is possible to make specimens identical in porosity but 
with different specific surfaces. For large values of n (with a fixed porosity), the push- 
wave speeds fall, while the ratio y =Vs/V p increases. Figures 1 and 2 show these calcula- 
tions on the velocities Vp and the ratio y =Vs/V p for artificial granular media with 1 -- 
as the variable, i.e., as functions of f and ~. The agreement with experiment is good. For 
large values of ~, Poisson's ratio tends to zero and may take negative values. The density 
of the elastic energy at the grain center is due only to the bulk strain e33, so this cor- 
responds to the large-scale field. At other points in the grain clearly there are tangen- 
tial stresses and strains. Here the fluctuation field will be represented as an integral 
over the grain volume: 

v 

where i and j take all values apart from the value o33e33, which defines the energy of the 

average large-scale field, i.e., E = .I o33e33dV. The solution enables one to calculate the 

important scattering parameter a =E/~ for an individual grain~ We have thus constructed 
a numerical procedure for determining the velocities and scattering parameters of push and 
"shake" waves in granularmedia in relation to the grain material and the structure of the 
pore space. 

LITERATURE CITED 

I. J.K. Mackenzie, "The elastic constant of a solid with spherical holes," Proc~ Phys. 
Soc. London, Ser. B, 63 (1950). 

2. G.T. Kuster and M. N. Toksoz, "Velocity and attenuation of seismic waves in two-phase 
media, Part I, theoretical formulations," Geophysics, 39, No. 5 (1974). 

3. Z. Hashin and S. Shtrikman, "A variational approach to the theory of elastic behavior 
of multiphase materials," J. Mech. Phys. Solids, ii (1963)~ 

4. T. D. Shermergor, Elasticity Theory for Microscopically Inhomogeneous Media [in 
Russian], Nauka, Moscow (1977). 

5. B.P. Sibiryakov, "Amethod of calculating elastic-wave speeds in gas-saturated periodic 
microstructures," Geol. Geofiz., No. 5 (1981). 

6. L.A. Maksimov, B. P. Sibiryakov, and M. A. Tatarnikov, "Theoretical and experimental 
studies on the propagation of push and shake waves in two-dimensional porous media," 
Geol. Geofiz., No. ii (1981). 

7. V.Z. Parton and P. I. Perlin, Integral Equations in the Theory of Elasticity [in 
Russian], Nauka, Moscow (1977). 

8. L.D. Landau and E. M. Lifshits, The Theory of Elasticity [in Russian], Nauka, Moscow 
(1965). 

581 


